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Abstract. Genetic algorithms (GA) are applied for the optimization of the structure of metallic clusters
by the calculation of the ground-state energies from a tight-binding (Hückel) Hamiltonian. The optimum
topology or graph is searched by the use of the adjacency matrix Aij as a natural coding. The initial pop-
ulations for N-atom clusters are generated from a representative group of fit cluster structures havingN −1
atoms by the addition of random connections or hoppings between the Nth atom and the rest of the cluster
atoms (AiN = 0 or 1). The diversity of geometries is enlarged by 20% with fully random structures. Several
crossover strategies are proposed for the genetic evolution that combine the “parent” clusters while trying to
preserve or transmit the physical characteristics of the parents’ topologies. The performance of the different
procedures is tested. ForN ≤ 13, the present GA yield topological structures that are in agreement with pre-
vious geometry optimizations performed using an enumerative search (N ≤ 9) or simulated annealing Monte
Carlo (10≤N ≤ 13) methods. Limitations and extensions for N ≥ 14 are discussed.

PACS. 61.46.+w Clusters, nanoparticles, and nanocrystalline materials – 36.40.Cg Electronic and magnetic
properties of clusters – 02.60.Pn Numerical optimization

1 Introduction

Geometrical structure is one of a cluster’s most fundamen-
tal properties. The large majority of physical properties
that make clusters so unique depend crucially on the local
environment of the atoms, and thus on the specific clus-
ter geometry. For example, the reactivity of clusters in
chemical reactions is sensitive to the availability of surface
atomic sites with low coordination numbers. The electronic
structure, as measured in photoemission or photoabsorp-
tion spectra, may be considered as a fingerprint of the sym-
metry and structure of the system. Magnetic properties
such as local magnetic moments are enhanced significantly
if the atoms have small local coordination numbers, and
even the magnetic order may depend on structure (e.g., fer-
romagnetic or antiferromagnetic) because of different mag-
netic frustrations effects. Therefore, a precise knowledge of
cluster geometry is often indispensable for the interpreta-
tion of experiments.

The determination of the ground-state structure of
a metallic cluster remains an open problem in current clus-
ter research. The lack of a direct means of determining
the relevant geometries experimentally in a cluster beam
complicates the comparison between theory and experi-
ment and enhances considerably the interest in computer
simulations in this area. Theoretically, the cluster struc-
tures are derived from an electronic property, the total
energy, with the configurational entropy at finite tempera-

tures taken into account. Within the Born–Oppenheimer
approximation, the geometrical configuration at T = 0 is
the one yielding the minimum energy. The problem of clus-
ter structure prediction may be therefore viewed as con-
sisting of two parts: The calculation of the ground-state
energy (or free energy) for a given configuration of the
atoms and the development of methods for searching the
lowest-energy configuration. This paper is concerned with
the determination of the structure of metal clusters by
a new implementation of genetic algorithms (GA) [1–4] in
the framework of a simple tight-binding or Hückel model.
We begin with a brief introduction to the principles of GA,
then describe our method of calculation, including the elec-
tronic model Hamiltonian and the specific implementation
of the search procedure. Finally, we discuss some results of
our simulations.

2 Genetic algorithms

Genetic algorithms are a general class of cooperative search
methods that mimic the mechanisms found in nature’s
gene-based evolution [1]. The search is done for a popula-
tion (ensemble of structures), not from a single individual,
and can be therefore regarded as an evolution over succes-
sive generations. The population evolves from one gener-
ation to the next by means of three main operations on
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its members: crossover, mutation, and selection. GA usu-
ally do not apply these operations directly to the actual
variables of the problem (in structure prediction, the set of
atomic coordinates) but to a string coding, a sort of genetic
code which contains all the information on an individual
in a compact, and often abstract, form. The coding is typ-
ically given by an integer in binary form (a succession of
bits); this is conditioned by the practical implementation,
and in some cases can be avoided [2, 4]. Besides being prac-
tical, string coding also contributes to the flexibility and
robustness of GA, allowing a wide range of applications to
very different problems which end up in similar codings.

The main steps in a GA optimization may be gener-
ally described as follows. An initial population Π0 of trial
solutions is established, represented by strings. Given the
population Πi at iteration i, the sequence of steps lead-
ing to the population Πi+1 starts with the creation of new
strings by crossover operations. For example, two mem-
bers of the population, or “parents”, are selected randomly
(eventually favoring the fittest strings), a breaking point in
the string is chosen, and two new population members, or
“children”, are created by the interchange of the left and
right portions of the parent strings. Mutations are intro-
duced, usually with a small probability; for instance, one of
the bits in the string may be changed. The fitness function
is evaluated for the new individuals, which form, together
with Πi, an intermediate population Π′i. Finally, the fittest
members in Π′i are selected so that a predefined size of
the population is kept. This yields the population Πi+1, of
the next generation, and a new crossover sequence may be
started.

There are obviously many details to be specified in an
implementation of GA that are problem-specific and that
have a strong influence on the performance of the method.
This includes in particular the actual coding of the cluster
structure and the associated crossover procedures, the gen-
eration of the initial population and its size, the type and
probability of mutations, the total number of generations,
and other convergence criteria. Various choices made in the
present study are explained in the following section. The
resulting performances are discussed in Sect. 4.

3 Method of calculation

The ground-state properties of the clusters are calculated
through the use of the tight-binding or Hückel Hamilto-
nian, given by

H0 =
∑
〈i,j〉,σ

tij c
†
iσcjσ , (1)

where, as usual, c†iσ (ciσ) refers to the creation (annihila-
tion) operator for an electron at site i with spin σ (t > 0).
In this model, the hopping integrals tij take only two pos-
sible values, namely, tij = −t if Rij = R0, and tij = 0 if
Rij >R0, where Rij refers to the interatomic distance and
R0 to the nearest-neighbor (NN) distance. Therefore, only
the topological aspect of the structure is relevant for the
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Fig. 1. Illustration of one of the crossover procedures used in
the present paper, labeled by B in Fig. 2. The adjacency ma-
trices Aij corresponding to the “mother” (shaded), “father”
(non-shaded), and “children” (mixed) are sketched (graph cod-
ing).

calculation of electronic properties such as the ground-
state energy E0. In other words, it is enough to identify
for each atom i the atoms j which are connected to i by
a hopping element t. Taking into account only NN hop-
pings with fixed bond length results in a discretization of
the configurational space. The geometry optimization can
be performed within the set of graphs with N vertices [5],
for example, by enumerative searches [6] or by simulated
annealing Monte Carlo techniques [7]. It should be noted,
however, that even with this simplification, the size of the
configurational space ng increases extremely rapidly with
the number of atomsN (for example, ng = 11 117 forN = 8
and ng = 11 716 571 for N = 10 [6]).

In order to perform the geometry optimization using
GA, we consider the adjacency matrix A, which has the
value Aij = 1, if i and j are NN, and Aij = 0 otherwise.
A contains all the information necessary for defining the
topology of the graph and thus provides a natural string
coding. It may be efficiently stored on a computer in the
form of the integer

α(A) =
∑
i>j

Aij 2(i−1)(i−2)/2+j−1 . (2)

The different bits in the binary notation of α correspond
to the lower-diagonal entries of A (Aij = 0, 1) [8]. The
integer α may be used directly as a string coding, and
the standard crossover method, consisting of the inter-
change of upper and lower parts of the parent strings,
may be applied straightforwardly, as discussed in Sect. 2.
This is one of the strategies used in our simulations. How-
ever, if alternative, more physical crossover procedures
are sought, it is easier to work with the original ma-
trix A, since it reflects more clearly the topologies of the
parent clusters and the way they are combined in the
children. We have used four different crossover strate-
gies, denoted by A–D. In Fig. 1, one of these is illus-
trated (herafter labeled B). Given the atom k that defines
the breaking point (1 < k < N), we observe that, when
the two children are formed, the topology of the father
(mother) within the subcluster containing the first k atoms
(last N −k atoms) is preserved. The hoppings tij between
the two subclusters (1 ≤ i ≤ k and k < j ≤N) are taken
from either one parent or the other. Additional crossover
schemes may be constructed by analogy [9]. It should be
noted that all the considered crossover procedures yield
similar acceptance rates and that it is mainly the com-
bination of several of them which is important for effi-
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Table 1. Optimized energies and structures for clusters having N = 7 atoms and ν electrons. a refers to [10] and b to [6].

previous works this work
N ν E0 E0 Ec structure

7 3 −10.197a −10.197 < 0.1

7 4 −11.458a −11.458 < 0.1

7 5 −11.257a −11.257 < 0.1

7 6 −11.875a −11.875 < 0.1

7 7 −11.105a,b −11.105 0.4

7 8 −11.105a −11.105 0.4

7 9 −9.540a −9.540 0.2

7 10 −8.910a −8.910 0.3

7 11 −7.109a −7.201 0.8

ciency. Mutation operators representing random changes
in the connectivities of one atom are also easily obtained.
An atom i is selected, and all its connections Aij are
redefined at random. In practice, mutations are intro-
duced only with a small probability (typically in 5% of the
generations).

At this point, the relation between the new string and
the Cartesian coordinates of the atoms is lost, particularly
since the numbering of atoms may be changed arbitrarily
without resulting change in the actual topological struc-
ture. This would be of no importance if one were just
interested in obtaining the graph with the lowest energy.
However, for the study of clusters, we must consider only
those graphs which can be represented as a true structure
in space. A graph is mathematically acceptable as a cluster
structure if a set of atomic coordinates Ri (i = 1, . . . , N)
exists such that

Rij =R0 if Aij = 1 , (3)

i.e., the sites i and j are connected in the graph, and

Rij >R0 if Aij = 0 . (4)

In practice, some flexibility has to be introduced because
of the continuous distance dependence of the hopping in-
tegrals and the interactions between cores found in real
systems. In fact, there are graphs which do not satisfy
the previous conditions upon the interatomic distances,
but which are physically acceptable as structures, since the
conditions are violated only slightly. For example, in a pen-
tagonal bipyramid (N = 7) it is reasonable – if the typical
distance dependences of the hopping integrals are taken
into account – to set tij =−t for Rij ' 1.02R0 as well as
for Rij = R0. Moreover, other graphs (N ≥ 7) do satisfy
the conditions on Rij , and would thus be mathematically
acceptable as cluster structures, but seem physically unre-
alistic, since in these cases one has tij = 0 forRij ' 1.02R0,
and tij = −t for Rij = R0. In order to take this into ac-
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Table 2. Optimized energies and structures for clusters having N = 8−14 atoms and ν =N electrons. a refers to [6] and b to [7].
The structures found in [7] forN = 11 and 12 are present in our final population, but they do not satisfy the conditions (3) and (4).

previous works this work
N ν E0 E0 Ec structure

8 8 −14.160a −14.160 0.1

9 9 −15.646a,b −15.646 0.2

10 10 −17.657a −18.056 0.3

−18.056b

11 11 −19.240a −19.550 0.2

−19.564b

12 12 −21.616a −21.837 0.2

−21.984b

13 13 −24.000a −24.009 0.7

−24.009b

14 14 −26.414a −26.414 0.2

−26.523b

count, we calculate the ground-state energy E from

E =E0 +Ec , (5)

where E0 refers to the sum of the occupied tight-binding
eigenvalues and

Ec = t
∑
ij

{
Aij

∣∣∣Rij
R0
−1
∣∣∣+ (1−Aij)

( R0

Rij

)12
}

(6)

represents a phenomenological core–core interaction, which
is weakly attractive if the sites are connected by the hop-
pings and repulsive if they are not. The minimum of Ec

for a given graph Aij provides a measure of the feasibility
of satisfying the graph conditions in a three-dimensional
structure. Moreover, including Ec in the calculation of the
energy is a simple way of excluding unphysical graphs,
which would otherwise dominate for N ≥ 8.

For the generation of the initial population Π0 for N -
atom clusters, a representative group of fit cluster struc-
tures having N −1 atoms (typically 80% of the optimized
population of a previous GA evolution) is considered, and
random connections or hoppings between the Nth atom

and the rest of the cluster (AiN = 0 or 1) are added. In
order to enlarge the diversity of individuals, we also in-
clude 20% of the random structures, which are obtained
by choosing Aij = 0 or 1 with equal probabilities and by
verifying that the graph is connected [5]. As expected, our
simulations show that it is much more efficient to use the
information on the fit structures of smaller sizes than to
consider only randomly connected structures (see Sect. 4).
It should be noted that in the present calculations, we
never include in Π0 any information from previous works
or any reasonably expected structures, such as icosahedra
or fcc cubooctahedra, since we are primarily interested in
testing the performance of GA.

4 Results and discussion

First of all, we would like to discuss some technical aspects
of the implemented GA in the light results of numerical
simulations. The GA and its parameterization were tested
on small clusters for which abundant results are avail-
able [6, 10]. For N ≤ 8, the search of structures performed
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Fig. 2. Ground-state energies of clusters having N = 13 atoms and ν = 13 electrons as a function of the number of generations i.
Emin

0 and Emin refer, respectively, to the optimum tight-binding and total energies. 〈E0〉 and 〈E〉 correspond to population av-
erages. In (a), the initial population Π0 is a set of randomly connected graphs, and in (b), it is derived from a fit population of
12-atom clusters. Notice that Emin

0 and 〈E0〉 need not decrease with increasing i, since the acceptance criterion is based on E. In
the upper part of the graphs, a dot indicates that a child has been retained at the generation i as a result of one of the proposed
crossover procedures A–D (see Fig. 1).

in [10] is exhaustive, since all the physically acceptable
graphs are investigated. We have thus particularly checked
our algorithm on the 7-atom system with different fill-
ings of the molecular orbitals (i.e., number of electrons ν).
As a matter of fact, there is a strong link between clus-
ter structure and band filling. For example, for ν = 4, the
structure is a prolate assembling of tetrahedrons, while it is
an oblate pentagonal bipyramid for ν = 7. Further details
on the subtle differences between the various structures
may be found in [10]. Notice, moreover, that ng = 853 con-
nected graphs have been recorded for N = 7. Therefore,
already N = 7 is a nontrivial problem for a global opti-
mization tool. As has been previously observed by several
authors, in some cases it is necessary to apply mutation op-
erators to members of the population in order to improve
the convergence of the method [2–4]. The most spectacular
effects related to mutations are found for larger systems.
In any case, we observe that the mutation rate must be
kept below 10%, otherwise the efficiency of the method
decreases.

The optimized tight-binding energies E0 of metal clus-
ters in the range N = 7–14 (hereafter denoted as MN ) are
given in Tables 1 and 2 together with the results of previous
works. The size of the population was taken to be 50 indi-
viduals, and the mutation rate was fixed to 5%. For N ≤ 7
and an arbitrary number of electrons (3≤ ν ≤ 11), the
present GA found the optimal structures reported in [10]
in less than 1000 generations. In each case, the coordinates

of the members of the initial population were created at
random. Of course, structures issued from a previous run
would be much more reasonable candidates for the initial
population (e.g., the optimized population for ν−1 elec-
trons). However, the purpose of these simulations was not
to find the optimal structures with the best efficiency, but
rather to test the robustness of the proposed GA. As is
shown in Table 1, the agreement with previous works is
excellent. The band-filling with ν = 11 electrons deserves
special attention. In this case, the structure reported in
Table 1 has an energy E0 which lies 0.1t below the op-
timal one of [10]. The graph of Table 1 is excluded from
the optimization in [10], since it does not satisfy the condi-
tions on the interatomic distances strictly. We find that it
has a large Ec (poor physical character), and that in fact
the structure of [10] yields the lowest E. In any case, both
structures are found in the optimized GA population. The
very good behavior of the algorithm encourages applica-
tions on larger systems.

In the following, the calculations concern clusters with
half-filled molecular orbitals (ν = N) which are isoelec-
tronic to alkali clusters. Starting from a random initial
population, the GA succeeded in finding the most stable
structure for N = 8, but it could not reach the absolute
minimum for N ≥ 9. Increasing the number of generations
up to 3000 and number of individuals in the population
up to 100 does not yield significantly better results. The
reason seems to be that as the number of atoms increases,
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the large majority of the graphs generated at random are
hardly physical. Many hundreds of generations are neces-
sary for bringing the initial population Π0 to low values of
Ec. Moreover, the number of graphs becomes prohibitively
large, and many graphs that are not physically acceptable
have a Hückel energy E0 that is lower than the optimal
one for N ≥ 8. Figure 2 illustrates this behavior in the case
of M13. Here we present results for the tight-binding en-
ergy of the minimum Emin

0 , the total energy Emin, and
the corresponding population averages 〈E0〉 and 〈E〉 as
a function of the number of generations. If Π0 contains only
random graphs (Fig. 2(a)), the lowest-energy cluster after
3000 generations has a repulsive energy Ec ' 1.6t, while
〈Ec〉= 1.7t. The known optimal cluster is the fcc cubooc-
tahedron with E0 =−24t and Ec = 0.2t. Typical values of
Ec for physical graphs reported in Tables 1 and 2 lie around
0.5t. We have checked that graphs with Ec > t violate the
conditions on the interatomic distances significantly, i.e.,
they have a very poor physical character. Consequently, if
Π0 is chosen at random, a long initial period is necessary
before reasonable candidates emerge. This problem can be
avoided by the creation of an initial population with fit
cluster structures. A discussion of seeding strategies may
be found in [4]. In our case, 80% of the initial clusters of
size N are constructed by the addition of an atom to the
previously determined structures havingN −1 atoms. The
remaining 20% of the initial population is created at ran-
dom in order to enlarge the diversity of patterns. Figure 2b
shows that in this way, the convergence of the algorithm is
significantly improved. The optimal structure is attained
before 4000 generations. Remarkably, as a result of the
mutation operations, we obtain another structure that is
quasi-degenerate with the perfect cubooctahedron. This is
a distorted cubooctahedron with an additional bond and
a Hückel energy 0.009t lower than the undistorted struc-
ture. The graph can still be considered as physically ac-
ceptable, since Ec = 0.7t. Comparing the molecular orbital
spectra of the perfect and distorted cubooctahedron, we
observe that the energy lowering is the result of a Jahn–
Teller lifting of degeneracies. This distorted structure has
been already reported by Yoshida et al. [7] but is not con-
sidered in [6].

For N ≥ 9, the GA was started with the previously dis-
cussed growth method. We obtained the results presented
in this paper by performing only one evolution or succes-
sion of generations. The size of the population was set at
150 members, and the number of generations was fixed to
5000. In many cases, only 2000 generations were necessary
to find the best geometry. However, note that considering
only one evolution is often not enough, neither for reaching
the absolute minimum, nor for evaluating correctly the ef-
ficacy of a given strategy [4]. For 10≤N ≤ 13, our optimal
cluster energies are often lower than those reported in [6],
in agreement with more recent simulated annealing calcu-
lations [7]. For N = 10 we find a structure based on the
bicapped square antiprism, with one square distorted into
a rhombus and some associated recombinations of bonds
(see Table 2). It is interesting that clusters with this type
of geometry have been already found to have very low en-
ergies by a distance-dependent tight-binding Hamiltonian

for alkali clusters [11]. Our structures for M11 and M12 are
built around the M10 seed. In [7], other geometries have
been found that show important distortions with respect
to those reported in Table 2 and that have lower Hückel
energies. In fact, these structures are present in our final
population but have a higher total energy since the repul-
sion is too large. In other words, they violate the conditions
(3) and (4) significantly.

The situation is different for N = 14. Using 13-atom
clusters as seeds for generating the initial population, we
obtain a unicapped cubooctahedron (see Table 2). In con-
trast, a clearly better topology has been found [7] that be-
longs to the family of optimal structures for N = 9–12. We
have therefore repeated the calculations, including struc-
tures in the initial population that we obtained by adding
sites randomly to the optima forN = 9–12. In this case, the
agreement with [7] is recovered.

In conclusion, a new implementation of genetic algo-
rithms for cluster structure prediction has been presented.
In this approach, the topology of the cluster plays a cen-
tral role in both string coding and the proposed crossover
operations. The efficacy of the method in applications
to metal clusters has been demonstrated by the use of
the topological Hückel model. This is of interest since
the efficiency of any implementation of GA (for example,
choice of the initial population, crossover procedures,
etc.) depends significantly on the specific problem under
study. Useful methodological extensions, for larger clus-
ters in particular, should take into account newly proposed
mutation and seeding strategies [4] as well as symbiotic
crossover methods [12]. Future applications include mag-
netism within the Hubbard model [10] and more complex
distance-dependent Hamiltonians [11].
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resources provided by IDRIS (CNRS) are gratefully acknow-
ledged.
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